A new CpGV isolate overcoming Cydia pomonella resistance to Granulovirus: improvement of the virus efficiency by pressure of selection on resistant hosts.

Marie Berling¹, Christine Blachere-Lopez¹, Olivier Soubabère², Yannis Tallot², Miguel Lopez Ferber¹, Benoît Sauphanor³, <u>Antoine Bonhomme²</u>

¹ EMA, centre LGEI, 6 avenue de Clavières 30100 ALES, France
 ² NPP (Arysta LifeScience), 35 avenue Léon Blum 64 000 Pau, France
 ³ INRA, unité PSH, Agroparc, 84914 AVIGNON Cedex 9, France

Cydia pomonella, a major pest on apple and pears

Worldwide pest under temperate climates (except Far east) 1-4 generations per year Many *C.p.* populations have become resistant to chemicals

CpGV, Cydia pomonella Granulovirus

- First isolated in Mexico in 1964
 → Mexican isolate
- Kills the larvae by ingestion

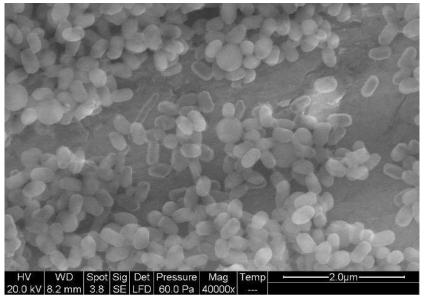


Photo Marie Berling, Ecole des Mines d'Alès

- > 100,000 super-developed hectares sprayed every year
- In organic orchard (20%) and in IPM (80%)

Resistance to CpGV

- First records in 2004
- Organic orchards only, after 5-10-52
 years of exclusive CpGV applications
- Number of locations is still very limited
- EU Com has granted 1M€ (CRAFT Project)

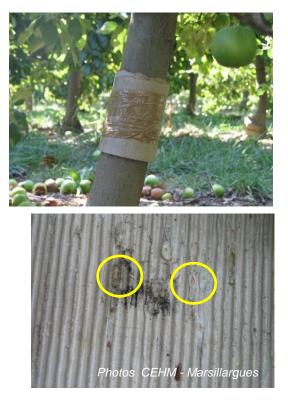
~20

2-3

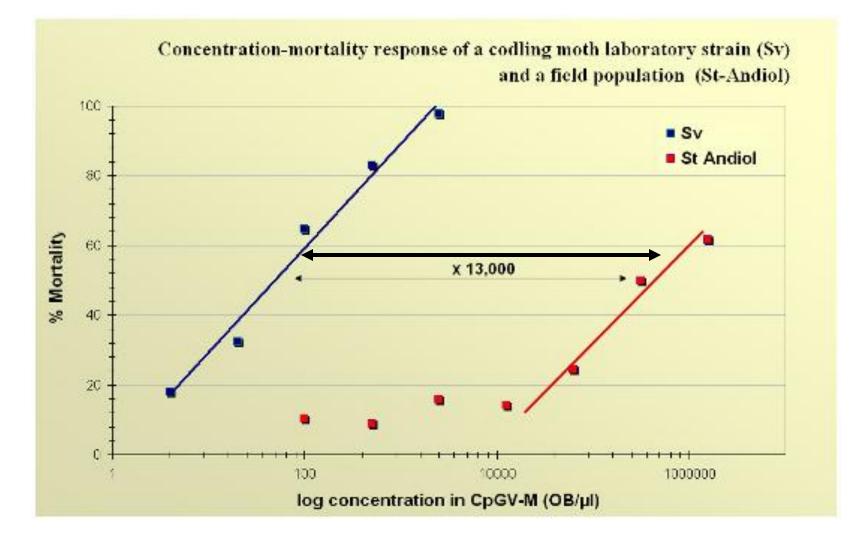
2-3

~5

- and France 0.4M€ (ANR)
- Arysta spent 0.2 M€ so far
- Recommendations to growers for resistance prevention
 → choose your generation


Methodology

For resistance assessment

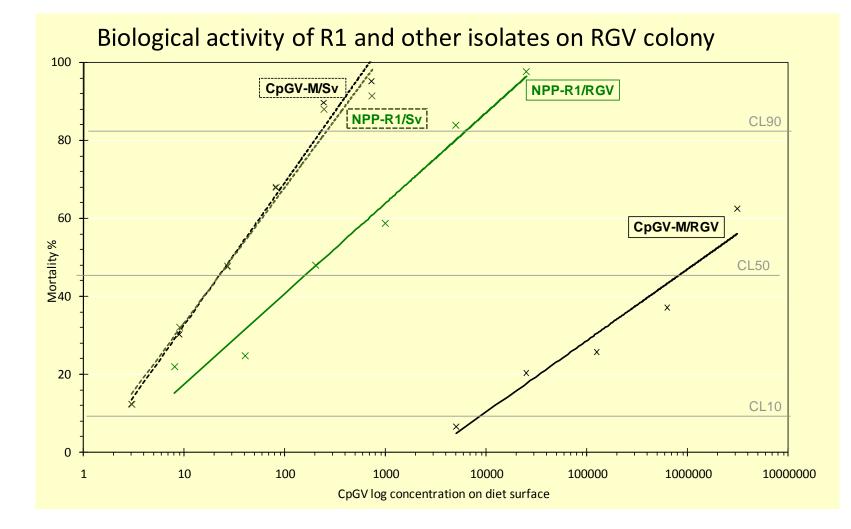

 Insect collection in fields where lowered efficacy was recorded and lab-tests for resistance

For research on new virus isolates

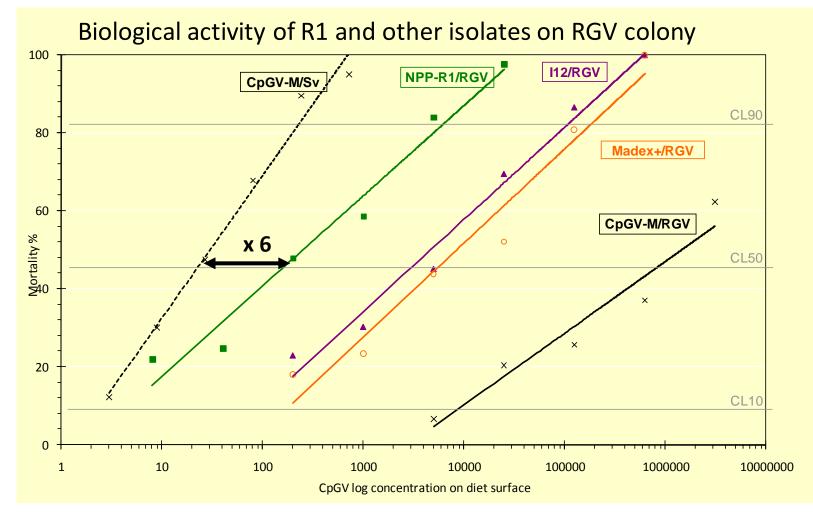
- Establishment of a resistant insect colony in the lab
- Screening of different virus isolates and selection of one or several promising isolates
- Purification and enhancement by propagating on the resistant colony
- Field trials



Starting point


 \rightarrow More than 13,000-fold a resistance factor

Introgression of resistance into a colony



→ More than 50,000-fold a resistance factor after introgression

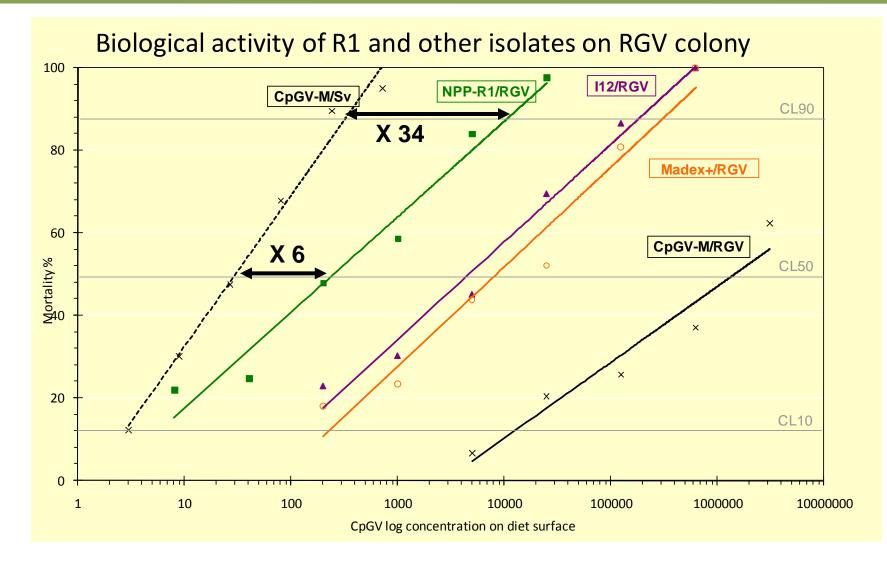
NPP-R1 in the lab

NPP-R1 in the lab

ightarrow Same efficacy on susceptible colony as the Mexican isolate

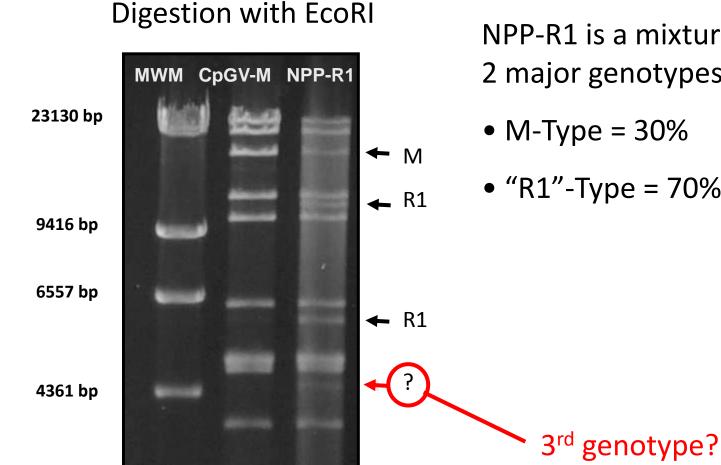
 \rightarrow Very promising efficacy on the 'RGV' resistant colony

NPP-R1 and I-12 in the field (2007)


Trial in Germany (Neustadt)

- No resistance
- Efficacy of R1 and I-12 was almost zero

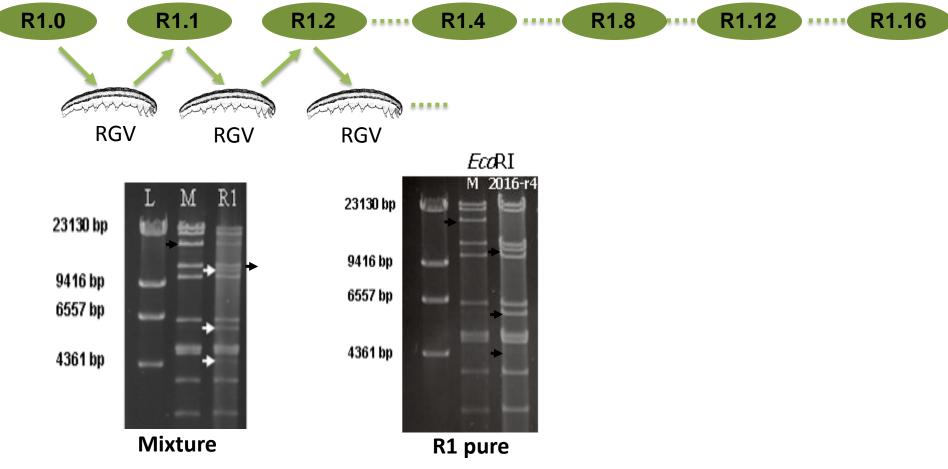
Trial in France


- Resistance
- Efficacy of R1 and I-12 was almost zero

NPP-R1 and I-12 in the field (2007)

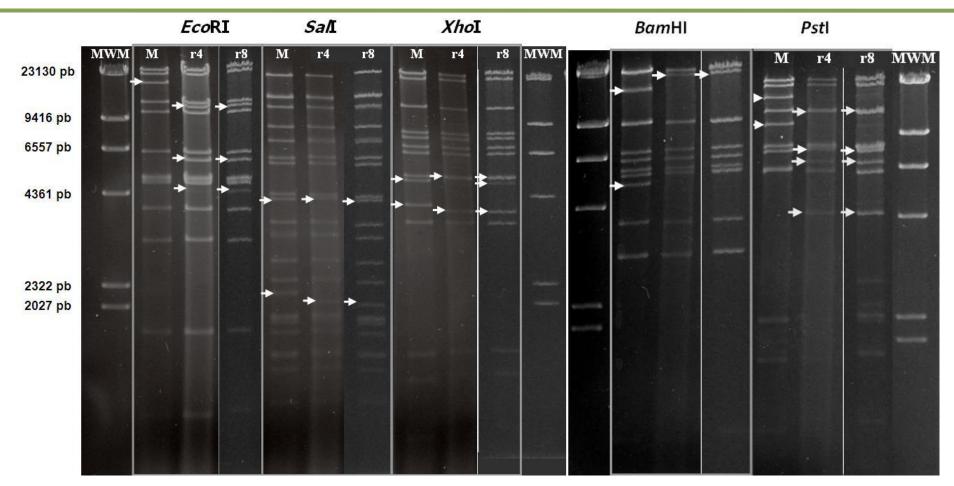
 \rightarrow NPP-R1 needs improvement to be competitive in the field

Starting point: NPP-R1 restriction profile

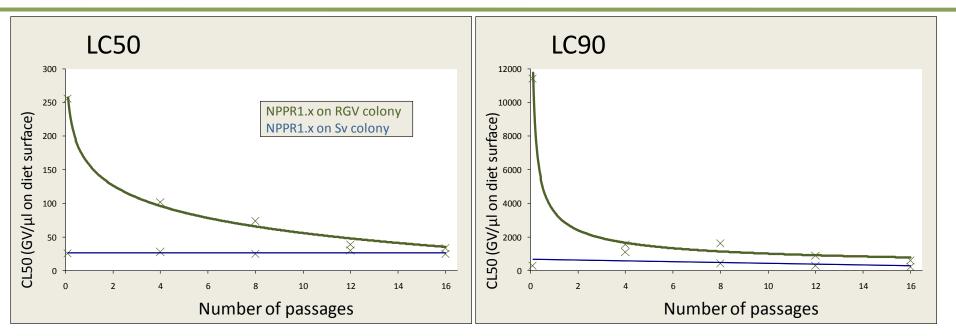


NPP-R1 is a mixture of at least 2 major genotypes:

• M-Type = 30%

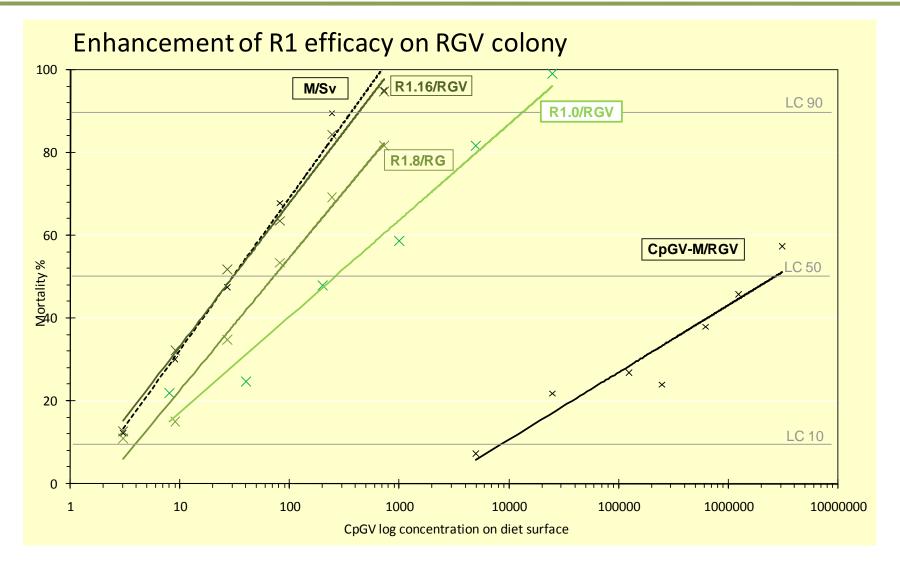

Purification – enhancement of NPP-R1

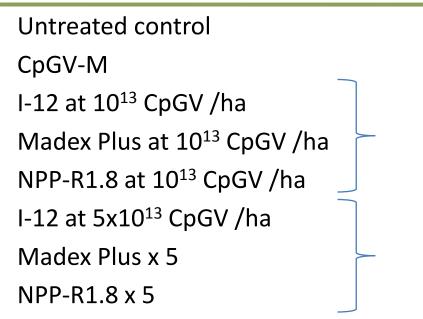
Virus purification by successive passages on a selective host, the RGV colony


 \rightarrow In 4 passages, reduction of the M-type to an indistinguishable level.

Complete restriction profile of NPP-R1

→ Same conclusion on 4 other enzymes (Sall, Xhol, BamHI, Pst1)


Biological enhancement of NPP-R1

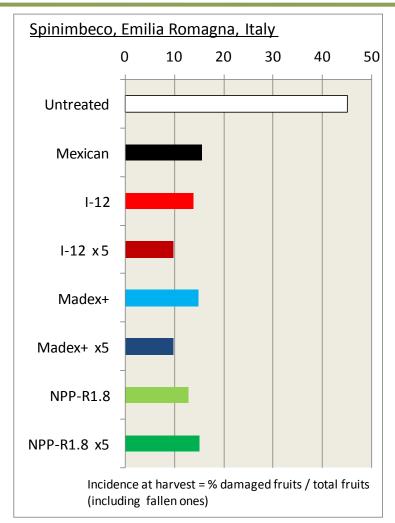

	LC50	min-max	ratio	LC90	min-max	ratio
CpGV-M / Sv	29	(14-49)		 377	(232-726)	
NPP-R1.0	167	(91-278)	5.7	12800	(5950-38000)	34.0
NPP-R1.4	102	(63-147)	3.5	1570	(1010-2970)	4.2
NPP-R1.8	75	(43-114)	2.6	1630	(993-3300)	4.3
NPP-R1.12	39	(20-65)	1.3	921	(550-1850)	2.4
NPP-R1.16	34	(16-59)	1.2	636	(365-1400)	1.7

- \rightarrow NPP-R1 should be competitive in the field
- ightarrow R1.8 was the last version available for the trials

Biological enhancement of NPP-R1

2008 field trials protocol

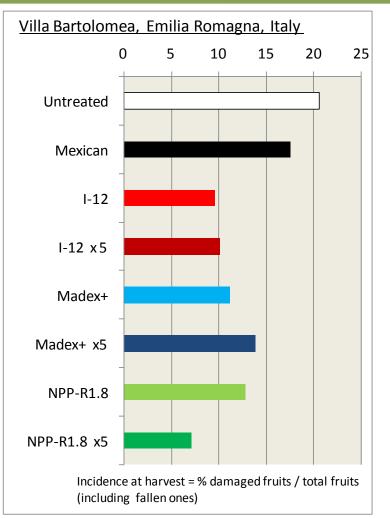
- \rightarrow to assess resistance of the population
- \rightarrow normal dose of Carpovirusine / hectare


 \rightarrow to check if 1L/ha is the maximum efficacy

- → All CpGV solutions are Carpovirusine with the specific isolate (except in Germany were Madex 3 was used as positive control)
- ightarrow Corrugated cardboard bands were used for checking effect on populations
- \rightarrow 7 trials on apple in Italy (2), Germany (2), France (3 \rightarrow 1)
- \rightarrow Locations were populations have been proven resistant (except 1 trial Germany)

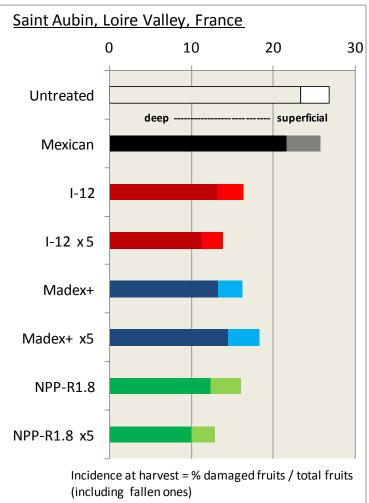
Spinimbeco, Emilia Romagna, Italy

	Damage 23/6		Incidence at harvest		Efficacy harvest	Traps healthy	Traps infected	
12.1	а		45.0	а		6.5	0.5	
3.3	b	67.3	15.6	b	65.6	1.8	1.8	
2.4	b	78.9	13.8	b	69.7	0.8	0.3	
1.3	b	89.6	9.7	b	78.7	0.3	0.5	
2.8	b	68.7	14.8	b	67.3	0.5	0.3	
5 3.4	b	71.6	9.7	b	78.5	0.3	0.3	
1.3	b	88.2	12.8	b	71.7	0.3	0.0	
x5 0.7	b	93.7	15.1	b	66.8	0.0	0.0	
	23/6 12.1 3.3 2.4 1.3 2.8 5 3.4 1.3	23/6 12.1 a 3.3 b 2.4 b 1.3 b 2.8 b 5 3.4 b 1.3 b	23/6 G1 12.1 a 3.3 b 67.3 2.4 b 78.9 1.3 b 89.6 2.8 b 68.7 5 3.4 b 71.6 1.3 b 88.2	23/6 G1 harves 12.1 a 45.0 3.3 b 67.3 15.6 2.4 b 78.9 13.8 1.3 b 89.6 9.7 2.8 b 68.7 14.8 5 3.4 b 71.6 9.7 1.3 b 88.2 12.8	23/6 G1 harvest 12.1 a 45.0 a 3.3 b 67.3 15.6 b 2.4 b 78.9 13.8 b 1.3 b 89.6 9.7 b 2.8 b 68.7 14.8 b 5 3.4 b 71.6 9.7 b 1.3 b 88.2 12.8 b	23/6 G1 harvest harvest 12.1 a 45.0 a 3.3 b 67.3 15.6 b 65.6 2.4 b 78.9 13.8 b 69.7 1.3 b 68.7 14.8 b 67.3 5 3.4 b 71.6 9.7 b 78.5 1.3 b 88.2 12.8 b 71.7	23/6 G1 harvest harvest healthy 12.1 a 45.0 a 6.5 3.3 b 67.3 15.6 b 65.6 1.8 2.4 b 78.9 13.8 b 69.7 0.8 1.3 b 89.6 9.7 b 78.7 0.3 2.8 b 68.7 14.8 b 67.3 0.5 5 3.4 b 71.6 9.7 b 78.5 0.3 1.3 b 88.2 12.8 b 71.7 0.3	


- No resistance.
- Extreme Codling moth pressure on harvest
- Same efficacy of the 3 new isolates for damage control
- No dose effect
- Good trend for population control

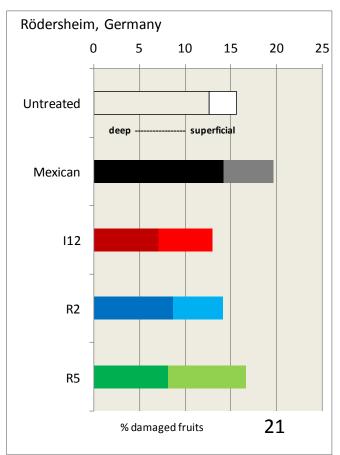
Villa Bartolomea, Emilia Romagna, Italy

Code	Damage 27/6		Efficacy G1	Incidence at harvest		Efficacy harvest	Traps healthy	Traps infected
1 Untreated	7.0	ns		20.6	а		0.5	0.0
2 Mexican	5.3	ns	36.0	17.5	ab	15.0	1.0	0.8
3 I-12	2.5	ns	48.5	9.6	ab	53.4	0.8	0.5
4 I-12 x 5	1.6	ns	60.3	10.1	ab	51.0	1.5	0.0
5 Madex+	4.3	ns	37.5	11.2	ab	45.6	0.0	0.8
6 Madex+ x5	2.5	ns	58.3	13.8	ab	33.0	1.5	1.0
7 NPP-R1.8	1.2	ns	60.9	12.8	ab	37.9	0.0	0.3
8 NPP-R1.8 x5	0.3	ns	70.6	7.1	b	65.5	0.0	0.0


- Resistant population
- Very high Codling moth pressure on harvest
- Good efficacy trend for the 3 new isolates
- No clear dose effect
- Good trend for R1 at the end of G1 and for population control

St Aubin le dépeint, Loire Valley, France

	Code	Tota dama		Deep dama				Efficacy on total	Efficacy on deep	Traps healthy	Traps infected	
1	Untreated	26.8	а	23.3	а	3.4	ns			3.3	0.0	
2	Mexican	25.7	а	21.6	а	4.1	ns	3.8	7.4	2.3	0.3	
3	I-12	16.3	b	13.1	b	3.2	ns	39.1	43.7	1.3	0.0	
4	I-12 x 5	13.9	b	11.3	b	2.6	ns	48.2	51.7	0.3	0.0	
5	Madex+	16.2	b	13.3	b	2.9	ns	39.6	43.2	1.3	0.3	
6	Madex+ x5	18.2	b	14.4	b	3.7	ns	32.0	38.1	1.0	0.0	
7	NPP-R1.8	16.0	b	12.3	b	3.6	ns	40.4	47.1	0.5	0.0	
8	NPP-R1.8 x5	12.8	b	10.0	b	2.8	ns	52.3	57.2	0.8	0.3	
												1


- Resistance population
- Very high Codling moth pressure on harvest
- The 3 new isolates provide good control of the damage (deep ones and total)
- No clear dose effect
- Good trend for R1

Rödersheim, Germany

	Code	Deep damage G1	Stopped damage G1	Total damage G1	Efficacy G1	Deep damage harvest	Stopped damage harvest	Total damage harvest	Efficacy harvest	Traps healthy	Traps infected
1	Untreated	8.1	2.7	10.8		12.6	3.0	15.6		0	0
2	Mexican	2.9	4.5	7.4	65%	14.2	5.4	19.6	-13%	6	0
3	I-12	0.7	2.1	2.8	91%	7.1	5.9	13.0	44%	2	0
4	Madex +	1.6	3.9	5.6	80%	8.6	5.5	14.1	31%	3	0
5	NPP-R1.8	1.1	5.4	6.5	86%	8.1	8.5	16.6	36%	1	0

- Population seems susceptible to M at G1 but not on harvest
- High pressure
- Excellent efficacy on 1st generation, very limited on 2nd
- I12 seems to work better
- Good trend for population control (traps)

General conclusion

- improvement of the virus efficiency by pressure of selection on resistant hosts was very successful in the lab
 - We are eager to test NPP-R1.16 in the field
 - New hosts (insect populations) will be necessary in the future
- Now alternate strains exist for overcoming resistance in the field,
 - The limited efficacy of the new isolates for controlling the damage is balanced by a good level of population control
 - Both parameters are showing that recovery from a situation of resistance is taking more than one season
- Field trials did not distinctly show the supremacy of NPP-R1 observed in the lab
 - Tremendous Codling moth pressure and high variability of the organic orchards do not provide enough discriminant data
 - At the moment we don't know whether 1 isolate will be able to overcome resistance everywhere or if we will need several to adapt to local conditions
 - This is a crucial point for our future strategy

Thank you for your attention!